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 Powers of derivations on semiprime rings  
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Abstract : 

 Chung and Luh [1] studied semiprime rings with nilpotent derivatives and established the result for (n-
1)!-torsion free semiprime rings. Giambruno and Herstein [2] proved the same result without assuming that R is 
(n-1)!-torsion free. Bresar [3] generalized the result of Chung and Luh. Herstein proved some related results in 
[4] and [5]. In this paper we prove that if R is an (n-1)!-torsion free semiprime  ring  with a  derivaiton d such 
that bd(x)na = 0 for a,b ∈ R and  for all x ∈ R, then bd(x)a = 0 for all x  ∈ R. 

Key words : Prime ring, semiprime ring, derivative, 2-torsion free ring. 
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I. Introduction : 

We know that an additive map d  from a ring R to R 
is called a derivation fon R if d(xy) = d(x)y + xd(y) 
for all x,y in R. A ring R is called prime if and only 
if xay = 0 for all a in R implies x = 0 or y = 0  and 
semiprime if and only if xax = 0 for all a in R 
implies x = 0.  

Throughout this paper R denotes an (n-1)!-
torsion free ring with a derivation d such that 
bd(x)na = 0.  

II.Main Theorem : 

To prove the main Theorem we need the following 
Lemmas. 

Lemma 1.1:  Let R be a m!-torsion free ring. 
Suppose that     t1, t2…. tm ∈ R satisfy kt1 + k2t2 
+…………… kmtm = 0 for k = 1,2……..m. Then ti = 
0 for all i. 
Lemma1.2:   For all x,y∈R,                            
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Using these, we prove the following. 

Lemma 1.3: For all x,y ∈ R, d2(x)ybd(x)n-1a = 0. 

Proof: Replacing y by d(x)y in 1.1, we obtain 
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Using the relation 1.1, this reduces to  
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knk axydxdxd , for all x,y ∈ R  1.2 

Replacing y = ybd(x)n-1 in the relation 1.2, we get  
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Since bd(x)na = 0, we get d(x)n-1d2(x)ybd(x)n-1a = 0. 
We will prove this Lemma by showing that 
  d(x)r+1d2(x) ybd(x)n-1a = 0, 
where r ≥ 0 is any integer, which implies 
  d(x)rd2(x)ybd(x)n-1 = 0. 
Taking y = ybd(x)r  in the relation 1.2, we obtain 
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Since bd(x)na = 0, this relation reduces to  
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Hence if u is an arbitrary element in R, then 
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  = 0. by hypothesis. 
By semiprimeness of R, this relation implies that  
 d(x)rd2(x)ybd(x)n-1a= 0.  

Lemma 1.4: For all x,y,z ∈ R,  
d2(z)ybd(x)n-1a = 0      1.3 

Proof: By Lemma 1.3 we have 
 d2(x)ybd(x)n-1a = 0. 
Linearizing, we obtain 
 T(x,z) = d2(x+z)ybd(x+z)n-1a = 0. 
That is,  (d2(x)+d2(z))yb (d(x) + d(z))n-1a = 0. 
Let us take (d(x) + d(z))n-1 as   γo + γ1 +…………+ 
γn-1 where γj denotes the sum of these terms in 
which d(x) appears as a factor in the product j times.     
Since d2(x)ybd(x)n-1a = d2(z)ybd(x)n-1a = 0, we have  
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Thus if tk = d2(x)ybγk-1a + d2(z)ybγka, 
then we can write 
  T(x,z) = t1 + ………… + tn-1. 
Clearly T(kx,z) = kt1 + k2t2 +………..+ kn-1tn-1 for 
every integer k. 
Since T(kx,z) = 0, for k = 1…….n-1, we have tn-1 = 
0 by Lemma 1.1.  
Note that γn-1 = d(x)n-1. 
Thus 0 = tn-1 = d2(x)yb γn-2a+ d2(z)yb γn-1a 
  = d2(x)yb γn-2a + d2(z)ybd(x)n-1a. 
Using this relation and Lemma 1.3, for every u ∈ R 
we have  
(d2(z)ybd(x)n-1a)ud2(z)ybd(x)n-1a =  
(-d2(x)ybγn-2a) u (d2(z)ybd(x)n-1a)=                            
-d2(x)(ybγn-2aud2(z)y)bd(x)n-1a = 0. 

Hence d2(z)ybd(x)n-1a = 0 by the semiprimeness of 
R.   

Lemma 1.4: For all x ∈ R, bd(x)2a = 0. 

Proof: We replace z by x2 in the relation 1.3.  

Then    d2(x2) yb d(x)n-1a = 0. 
This implies d(d2(x2)) yb d(x)n-1a = 0.  
So  d(d(x)x + xd(x)) yb d(x)n-1a = 0, 
(d2(x)x + xd(x)2 + xd2d(x)) yb d(x)n-1a = 0, 
[d2(x)x + 2(d(x))2 + xd2(x)] yb d(x)n-1a = 0. 
By Lemma 1.3, this relation reduces to  
  2d(x)2 yb d(x)n-1a = 0. 
Let us assume that n ≥ 3. 
Then R is 2-torsion free by assumption. 
So d(x)2 yb d(x)n-1a = 0. 
Since y is arbitrary, we also have 
  d(x)n-1aybd(x)n-1a = 0.  
Hence bd(x)n-1aybd(x)n-1a = 0. 
By semiprimeness of R, we obtain  
  bd(x)n-1a = 0. 
Since n is any integer larger than 2 we have  
by induction bd(x)2a = 0. 

Theorem 1.1: If R is a semiprime ring with a 
derivation d such that bd(x)na = 0 for all a,b,x ∈ R 
and n is a positive integer, then bd(x)a = 0 for all 
a,b,x ∈ R. Moreover, if R is prime, then either a= 0 
or b = 0 or d = 0. 

Proof: Let us assume that bd(x)na = 0 for all      
x,a,b ∈ R. By lemma 1.4, we may assume that         
n = 2. 
Hence by the relation 1.3, we have d2(z)ybd(x)a = 0, 
for all x,y,z ∈ R. 
Since y is arbitrary, we have bd2(z)aybd2(x)a = 0. 
In particular, bd2(x)aybd2(x)a = 0 
 and also bd2(z)d(x)aybd2(z)d(x)a = 0 
which imply bd2(x)a = 0, for all x ∈ R  and       1.4 
 bd2(z)d(x)a = 0, for all x,z ∈ R       1.5 
by the semiprimeness of R. 
We linearize bd2(x)a = 0. Then we get
 bd(x+y)2a = 0. 
That is,b[d(x) + d(y)]2a = 0 which implies 
bd(x)2a + bd(y)2a + bd(x)d(y)a + bd(y)d(x)a = 0. 
Using the equation 1.4, we obtain 
bd(x)d(y)a + bd(y)d(x)a = 0, for all x,y ∈ R.       1.6 
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By replacing y by ybd(x) in the equaion 1.6, we get 
 bd(x)d(ybd(x))a + bd(ybd(x))d(x)a = 0.   
This implies 
bd(x)d(y)bd(x)a+bd(x)yd(b)d(x)a+bd(x)ybd2(x)a+ 
bd(y)bd(x)2a+byd(b)d(x)2a+bybd2(x)d(x)a = 0. 
Now, using the equations 1.4, 1.5 and bd(x)2a= 0, 
this relation reduces to bd(x)d(y)bd(x)a+ 
bd(x)yd(b)d(x)a + byd(b)d(x)2a = 0. 
Replacing b by byd(b) in bd(x)2a = 0, we get 
byd(b)d(x)2a = 0.                                              1.7 
Hence bd(x)[d(y)b + yd(b)]d(x)a = 0 implies 
    bd(x)d(yb)d(x)a=0, for all x,y∈R.                     1.8 
Linearizing the equation 1.8, we obtain 
 bd(x+z) d(yb) d(x+z)a = 0, 
bd(x)d(yb) d(x)a + bd(z)d(yb)d(x)a + bd(x)d(yb)d(z)a 
+ bd(z)d(yb)d(z)a = 0. 
Using the equation 1.8, we get, 
bd(x)d(yb) d(z)a + bd(z)d(yb)d(x)a = 0.       1.9 
By taking yb = ybd(z) in the equation 1.9, we get 
bd(x)d(ybd(z))d(z)a + bd(z)d(ybd(z))d(x)a = 0.  
This implies 

bd(x)d(y)bd(z)2a+bd(x)yd(b)d(z)2a+bd(x)yb
d2(z)d(x)a+bd(z)d(y)bd(z)d(x)a+bd(z)yd(b)d(z)d(x)a 
+ bd(z) ybd2(z)d(x)a = 0. 
Using the equation 1.5 and bd(z)2 a= 0, we obtain 
 bd(z)d(y)bd(z)d(x)a + bd(z)yd(b)d(z)d(x)a 
   + bd(x)yd(b)d(z)2a = 0. 
Replacing y by d(x)y in the relation 1.7, we get  
          bd(x)yd(b)d(z)2a = 0. 
Therefore   bd(z)(d(yb + yd(b))d(z)d(x)a = 0. 
Hence         bd(z)d(yb)d(z)d(x)a = 0. 
Put yb = ybd(x)u in this equation. 
Then we have 
 bd(z) d(ybd(x)u) d(z) d(x)a = 0. 
That is, 
 bd(z)[d(y)bd(x)u+yd(b)d(x)u+ybd2(x)d(u)+ + 
ybd(x)d(u)]d(z)d(x)a = 0, 
bd(z)d(y)bd(x)ud(z)d(x)a+bd(z)yd(b)d(x)ud(z)d(x)a   
+bd(z)ybd2(x)d(u)d(z)d(x)a+ 
bd(z)ybd(x)d(u)d(z)d(x)a = 0.                             1.10 
By replacing y by d(u)z in the equation 1.8, we 
obtain 
 bd(x)d(d(u)zb) d(x)a = 0 
 bd(x)d2(u)zbd(x)a + bd(x)d(u)d(zb)d(x)a = 0. 
Using the equation 1.3, it reduces to  
 bd(x)d(u)d(zb)d(x)a = 0. 
The equation 1.10 reduces to   
          bd(z)d(yb)d(x)ud(z)d(x)a = 0,                  1.11 

          for all x,y,z,u ∈ Z. 
By replacing b by bd(yb) in the equation 1.6 
 bd(yb)d(x)d(yb)a + bd(y)2d(x)a = 0. 
By the relation 1.7, it follows that bd(yb)2d(x)a = 0 
for all x,y ∈ R. 
On linearizing we get  bd(yb+z)2 d(x)a = 0, 
 bd(yb)2d(x)a + bd(z)2d(x)a + bd(yb)d(z)d(x)a 
+ bd(z) d(yb)d(x)a = 0. 
Using the equation 1.5, it reduces to  
  bd(yb)d(z)d(x)a + bd(z)d(yb)d(x)a = 0. 
Since the element u the equation 1.11 is arbitrary, 
we also have  
 bd(z)d(yb)d(x)au bd(y)d(z)d(x)a = 0. 
Combining these two relations, 
 bd(z)d(yb)d(x)aubd(z)d(yb)d(x)a = 0, for all 
x,y,z ∈ R. 
Since R is semiprime this relation implies 
bd(z)d(yb)d(x)a = 0, for all x,y,z ∈ R.      1.12 
By replacing d(z) by xd(z), we get 
           bxd(z)d(yb)d(x)a=0.                             1.13 
By substituting xz for z in the equation 1.12, we 
obtain 
 b d(xz) d(yb) d(x)a = 0. 
This implies  
     bd(x)zd(yb)d(x)a +b xd(z)d(yb)d(z)a = 0. 
Hence bd(x)zd(yb)d(x)a = 0, for all x,y,z ∈ R by 
using the equation 1.12 
 which yields 
 bd(yb)d(x)a = 0, since R is semiprime. 
Now, by replacing yb by xyb, we get 
 bd(xyb) d(x)a = 0, 
 bd(x)ybd(x)a + bxd(yb) d(x)a = 0.          1.14 
By replacing d(yb) by xd(yb) in the equation   1.14, 
we get bxd(yb)d(x)a = 0,   hence the above equation 
reduces to 
 bd(x)ybd(x)a = 0. 
Since y is arbitrary, we have 
 bd(x)aybd(x)a = 0. 
Hence bd(x)a = 0. 
If R is prime then either bd(x) = 0 or a = 0 for all x 
∈ R. Again by primeness of R we get either a= 0 or 
b = 0 or d(x) = 0. 
The proof of Theorem 1.1 is thus completed.   
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